5-HT3 Signaling Alters Development of Sacral Neural Crest Derivatives That Innervate the Lower Urinary Tract

5-HT3 信号改变支配下尿路的骶神经嵴衍生物的发育

阅读:4
作者:K Elaine Ritter, Dennis P Buehler, Stephanie B Asher, Karen K Deal, Shilin Zhao, Yan Guo, E Michelle Southard-Smith

Abstract

The autonomic nervous system derives from the neural crest (NC) and supplies motor innervation to the smooth muscle of visceral organs, including the lower urinary tract (LUT). During fetal development, sacral NC cells colonize the urogenital sinus to form pelvic ganglia (PG) flanking the bladder neck. The coordinated activity of PG neurons is required for normal urination; however, little is known about the development of PG neuronal diversity. To discover candidate genes involved in PG neurogenesis, the transcriptome profiling of sacral NC and developing PG was performed, and we identified the enrichment of the type 3 serotonin receptor (5-HT3, encoded by Htr3a and Htr3b). We determined that Htr3a is one of the first serotonin receptor genes that is up-regulated in sacral NC progenitors and is maintained in differentiating PG neurons. In vitro cultures showed that the disruption of 5-HT3 signaling alters the differentiation outcomes of sacral NC cells, while the stimulation of 5-HT3 in explanted fetal pelvic ganglia severely diminished neurite arbor outgrowth. Overall, this study provides a valuable resource for the analysis of signaling pathways in PG development, identifies 5-HT3 as a novel regulator of NC lineage diversification and neuronal maturation in the peripheral nervous system, and indicates that the perturbation of 5-HT3 signaling in gestation has the potential to alter bladder function later in life.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。