Inhibition of euchromatin histone-lysine N-methyltransferase 2 sensitizes breast cancer cells to tumor necrosis factor-related apoptosis-inducing ligand through reactive oxygen species-mediated activating transcription factor 4-C/EBP homologous protein-death receptor 5 pathway activation

抑制真染色质组蛋白赖氨酸N-甲基转移酶2通过活性氧介导的激活转录因子4-C/EBP同源蛋白-死亡受体5通路激活使乳腺癌细胞对肿瘤坏死因子相关的凋亡诱导配体敏感

阅读:5
作者:So Young Kim, MiNa Hong, Seung-Ho Heo, Sojung Park, Taeg Kyu Kwon, Young Hoon Sung, Yumin Oh, Seulki Lee, Gwan-Su Yi, Inki Kim

Abstract

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been characterized as an anti-cancer therapeutic agent with prominent cancer cell selectivity over normal cells. However, breast cancer cells are generally resistant to TRAIL, thus limiting its therapeutic potential. In this study, we found that BIX-01294, a selective inhibitor of euchromatin histone methyltransferase 2/G9a, is a strong TRAIL sensitizer in breast cancer cells. The combination of BIX-01294 and TRAIL decreased cell viability and led to an increase in the annexin V/propidium iodide-positive cell population, DNA fragmentation, and caspase activation. BIX-01294 markedly increased death receptor 5 (DR5) expression, while silencing of DR5 using small interfering RNAs abolished the TRAIL-sensitizing effect of BIX-01294. Specifically, BIX-01294 induced C/EBP homologous protein (CHOP)-mediated DR5 gene transcriptional activation and DR5 promoter activation was induced by upregulation of the protein kinase R-like endoplasmic reticulum kinase-mediated activating transcription factor 4 (ATF4). Moreover, inhibition of reactive oxygen species by N-acetyl-L-cysteine efficiently blocked BIX-01294-induced DR5 upregulation by inhibiting ATF4/CHOP expression, leading to diminished sensitization to TRAIL. These findings suggest that BIX-01294 sensitizes breast cancer cells to TRAIL by upregulating ATF4/CHOP-dependent DR5 expression with a reactive oxygen species-dependent manner. Furthermore, combination treatment with BIX-01294 and TRAIL suppressed tumor growth and induced apoptosis in vivo. In conclusion, we found that epigenetic regulation can contribute to the development of resistance to cancer therapeutics such as TRAIL, and further studies of unfolded protein responses and the associated epigenetic regulatory mechanisms may lead to the discovery of new molecular targets for effective cancer therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。