ΔNp63 regulates select routes of reprogramming via multiple mechanisms

ΔNp63 通过多种机制调控重编程的选择途径

阅读:7
作者:E M Alexandrova, O Petrenko, A Nemajerova, R-A Romano, S Sinha, U M Moll

Abstract

Somatic cells can be converted into induced pluripotent stem cells (iPSCs) by forced expression of various combinations of transcription factors, but the molecular mechanisms of reprogramming are poorly understood. Specifically, evidence that the reprogramming process can take many distinct routes only begins to emerge. It is definitively established that p53 deficiency greatly enhances reprogramming, revealing p53's barrier function for induced pluripotency, but the role of its homologs p63 and p73 are unknown. Here we report that in stark contrast to p53, p73 has no role in reprogramming. However, p63 is an enabling (rather than a barrier) factor for Oct4, Sox2 and Klf4 (OSK) and Oct4 and Sox2 (OS), but not for Oct4 and Klf4 (OK) reprogramming of mouse embryonic fibroblasts. Specifically, p63 is essential during reprogramming for maximum efficiency, albeit not for the ability to reprogram per se, and is dispensable for maintaining stability and pluripotency of established iPSC colonies. ΔNp63, but not TAp63, is the principal isoform involved. Loss of p63 can affect reprogramming via several mechanisms such as reduced expression of mesenchymal-epithelial transition and pluripotency genes, hypoproliferation and loss of the most reprogrammable cell populations. During OSK and OS reprogramming, different mechanisms seem to be critical, such as regulation of epithelial and pluripotency genes in OSK reprogramming versus regulation of proliferation in OS reprogramming. Finally, our data reveal three different routes of reprogramming by OSK, OS or OK, based on their differential p63 requirements for iPSC efficiency and pluripotency marker expression. This supports the concept that many distinct routes of reprogramming exist.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。