Pseudouridylation of 7SK snRNA promotes 7SK snRNP formation to suppress HIV-1 transcription and escape from latency

7SK snRNA 的假尿苷化促进 7SK snRNP 形成,从而抑制 HIV-1 转录并逃避潜伏期

阅读:4
作者:Yang Zhao, John Karijolich, Britt Glaunsinger, Qiang Zhou

Abstract

The 7SK snRNA sequesters P-TEFb, a general transcription elongation factor and human co-factor for HIV-1 Tat protein, into the catalytically inactive 7SK snRNP Little is known about how 7SK RNA is regulated to perform this function. Here, we show that most of 7SK is pseudouridylated at position U250 by the predominant cellular pseudouridine synthase machinery, the DKC1-box H/ACA RNP Pseudouridylation is critical to stabilize 7SK snRNP, as its abolishment by either mutation at or around U250 or depletion of DKC1, the catalytic component of the box H/ACA RNP, disrupts 7SK snRNP and releases P-TEFb to form the super elongation complex (SEC) and the Brd4-P-TEFb complex. The SEC is then recruited by Tat to the HIV-1 promoter to stimulate viral transcription and escape from latency. Thus, although 7SK RNA levels remain mostly unchanged, its function is modulated by pseudouridylation, which in turn controls transcription of both HIV-1 and cellular genes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。