3,5,3'-Triiodo-L-Thyronine Regulates Actin Cytoskeleton Dynamic in The Differentiated PC-12 Cells during Hypoxia through An αvβ3 Integrin

3,5,3'-三碘-L-甲状腺素通过αvβ3整合素调节分化PC-12细胞缺氧过程中肌动蛋白细胞骨架的动态

阅读:4
作者:Tamar Barbakadze, Elisabed Kvergelidze, Judit Bátor, József Szeberényi, David Mikeladze

Conclusion

The T3 thyroid hormone may modulate the G/F actin ratio via the Rac1 GTPase/NADPH oxidase/ cofilin1signaling pathway and αvβ3-integrin-dependent suppression of Fyn kinase phosphorylation.

Methods

In this experimental study, we analysed the dynamics of actin cytoskeleton according to the G/F actin ratio, cofilin-1/p-cofilin-1 ratio, and p-Fyn/Fyn ratio in differentiated PC-12 cells with/without T3 hormone (3,5,3'-triiodo-L-thyronine) treatment and blocking αvβ3-integrin-antibody under hypoxic conditions using electrophoresis and western blotting methods. We assessed NADPH oxidase activity under the hypoxic condition by the luminometric method and Rac1 activity using the ELISA-based (G-LISA) activation assay kit.

Objective

Thyroid hormones are involved in the pathogenesis of various neurological disorders. Ischemia/hypoxia that induces rigidity of the actin filaments, which initiates neurodegeneration and reduces synaptic plasticity. We hypothesized that thyroid hormones via alpha-v-beta-3 (αvβ3) integrin could regulate the actin filament rearrangement during hypoxia and increase neuronal cell viability. Materials and

Results

The T3 hormone induces the αvβ3 integrin-dependent dephosphorylation of the Fyn kinase (P=0.0010), modulates the G/F actin ratio (P=0.0010) and activates the Rac1/NADPH oxidase/cofilin-1 (P=0.0069, P=0.0010, P=0.0045) pathway. T3 increases PC-12 cell viability (P=0.0050) during hypoxia via αvβ3 integrin-dependent downstream regulation systems.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。