Novel allele-dependent role for APOE in controlling the rate of synapse pruning by astrocytes

APOE 在控制星形胶质细胞突触修剪率方面具有新的等位基因依赖性作用

阅读:5
作者:Won-Suk Chung, Philip B Verghese, Chandrani Chakraborty, Julia Joung, Bradley T Hyman, Jason D Ulrich, David M Holtzman, Ben A Barres

Abstract

The strongest genetic risk factor influencing susceptibility to late-onset Alzheimer's disease (AD) is apolipoprotein E (APOE) genotype. APOE has three common isoforms in humans, E2, E3, and E4. The presence of two copies of the E4 allele increases risk by ∼12-fold whereas E2 allele is associated with an ∼twofold decreased risk for AD. These data put APOE central to AD pathophysiology, but it is not yet clear how APOE alleles modify AD risk. Recently we found that astrocytes, a major central nervous system cell type that produces APOE, are highly phagocytic and participate in normal synapse pruning and turnover. Here, we report a novel role for APOE in controlling the phagocytic capacity of astrocytes that is highly dependent on APOE isoform. APOE2 enhances the rate of phagocytosis of synapses by astrocytes, whereas APO4 decreases it. We also found that the amount of C1q protein accumulation in hippocampus, which may represent the accumulation of senescent synapses with enhanced vulnerability to complement-mediated degeneration, is highly dependent on APOE alleles: C1q accumulation was significantly reduced in APOE2 knock-in (KI) animals and was significantly increased in APOE4 KI animals compared with APOE3 KI animals. These studies reveal a novel allele-dependent role for APOE in regulating the rate of synapse pruning by astrocytes. They also suggest the hypothesis that AD susceptibility of APOE4 may originate in part from defective phagocytic capacity of astrocytes which accelerates the rate of accumulation of C1q-coated senescent synapses, enhancing synaptic vulnerability to classical-complement-cascade mediated neurodegeneration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。