The activity-regulated cytoskeleton-associated protein (Arc) functions in a cell type- and sex-specific manner in the adult nucleus accumbens to regulate non-contingent cocaine behaviors

活性调节的细胞骨架相关蛋白 (Arc) 在成人伏隔核中以细胞类型和性别特异性的方式发挥作用,以调节非偶然的可卡因行为

阅读:7
作者:Daniel J Wood, Jessica L Huebschman, Dalia Martinez, Evgeny Tsvetkov, Kirsten Snyder, Raymond Tjhia, Jaswinder Kumar, Brandon W Hughes, Makoto Taniguchi, Laura N Smith, Christopher W Cowan, Rachel D Penrod

Abstract

Repeated cocaine use produces adaptations in brain function that contribute to long-lasting behaviors associated with cocaine use disorder (CUD). In rodents, the activity-regulated cytoskeleton-associated protein (Arc) can regulate glutamatergic synaptic transmission, and cocaine regulates Arc expression and subcellular localization in multiple brain regions, including the nucleus accumbens (NAc)-a brain region linked to CUD-related behavior. We show here that repeated, non-contingent cocaine administration in global Arc KO male mice produced a dramatic hypersensitization of cocaine locomotor responses and drug experience-dependent sensitization of conditioned place preference (CPP). In contrast to the global Arc KO mice, viral-mediated reduction of Arc in the adult male, but not female, NAc (shArcNAc) reduced both CPP and cocaine-induced locomotor activity, but without altering basal miniature or evoked glutamatergic synaptic transmission. Interestingly, cell type-specific knockdown of Arc in D1 dopamine receptor-expressing NAc neurons reduced cocaine-induced locomotor sensitization, but not cocaine CPP; whereas, Arc knockdown in D2 dopamine receptor-expressing NAc neurons reduced cocaine CPP, but not cocaine-induced locomotion. Taken together, our findings reveal that global, developmental loss of Arc produces hypersensitized cocaine responses; however, these effects cannot be explained by Arc's function in the adult mouse NAc since Arc is required in a cell type- and sex-specific manner to support cocaine-context associations and locomotor responses.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。