Dual control of dopamine in Drosophila myeloid-like progenitor cell proliferation and regulation of lymph gland growth

多巴胺对果蝇髓样祖细胞增殖和淋巴腺生长调节的双重控制

阅读:6
作者:Ankita Kapoor, Achalla Padmavathi, Sukanya Madhwal, Tina Mukherjee

Abstract

In Drosophila, definitive haematopoiesis takes place in a specialized organ termed "lymph gland". It harbours multi-potent stem-like blood progenitor cells whose development controls overall growth of this haematopoietic tissue and formation of mature blood cells. With respect to its development, neurotransmitters have emerged as potent regulators of blood-progenitor cell development and function. In this study, we extend our understanding of neurotransmitters and show that progenitors are self-sufficient with regard to synthesizing dopamine, a well-established neurotransmitter. These cells also have modules for dopamine sensing through the receptor and transporter. We found that modulating expression of these components in progenitor cells affected lymph gland growth, which suggested growth-promoting function of dopamine in blood-progenitor cells. Cell-cycle analysis of developing lymph glands revealed an unexpected requirement for intracellular dopamine in moderating the progression of early progenitor cells from S to G2 phase of the cell cycle, while activation of dopamine receptor signalling later in development regulated their progression from G2 and entry into mitosis. The dual capacity in which dopamine operated, first intracellularly to coordinate S/G2 transition and later extracellularly in G2/M transition, was critical for the growth of the lymph gland. Overall, the data presented highlight a novel non-canonical use of dopamine in the myeloid system that reveals an uncharacterized function of intracellular dopamine in cell-cycle phasing with outcomes on haematopoietic growth and immunity as well.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。