Thyroid Cancer Central Lymph Node Metastasis Risk Stratification Based on Homogeneous Positioning Deep Learning

基于同质定位深度学习的甲状腺癌中心淋巴结转移风险分层

阅读:6
作者:Siqiong Yao, Pengcheng Shen, Fang Dai, Luojia Deng, Xiangjun Qiu, Yanna Zhao, Ming Gao, Huan Zhang, Xiangqian Zheng, Xiaoqiang Yu, Hongjing Bao, Maofeng Wang, Yun Wang, Dandan Yi, Xiaolei Wang, Yuening Zhang, Jianfeng Sang, Jian Fei, Weituo Zhang, Biyun Qian, Hui Lu

Abstract

Due to the absence of definitive diagnostic criteria, there remains a lack of consensus regarding the risk assessment of central lymph node metastasis (CLNM) and the necessity for prophylactic lymph node surgery in ultrasound-diagnosed thyroid cancer. The localization of thyroid nodules is a recognized predictor of CLNM; however, quantifying this relationship is challenging due to variable measurements. In this study, we developed a differential isomorphism-based alignment method combined with a graph transformer to accurately extract localization and morphological information of thyroid nodules, thereby predicting CLNM. We collected 88,796 ultrasound images from 48,969 patients who underwent central lymph node (CLN) surgery and utilized these images to train our predictive model, ACE-Net. Furthermore, we employed an interpretable methodology to explore the factors influencing CLNM and generated a risk heatmap to visually represent the distribution of CLNM risk across different thyroid regions. ACE-Net demonstrated superior performance in 6 external multicenter tests (AUC = 0.826), surpassing the predictive accuracy of human experts (accuracy = 0.561). The risk heatmap enabled the identification of high-risk areas for CLNM, likely correlating with lymphatic metastatic pathways. Additionally, it was observed that the likelihood of metastasis exceeded 80% when the nodal margin's minimum distance from the thyroid capsule was less than 1.25 mm. ACE-Net's capacity to effectively predict CLNM and provide interpretable disease-related insights can importantly reduce unnecessary lymph node dissections by 37.9%, without missing positive cases, thus offering a valuable tool for clinical decision-making.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。