Zinc metal complexes synthesized by a green method as a new approach to alter the structural and optical characteristics of PVA: new field for polymer composite fabrication with controlled optical band gap

绿色方法合成锌金属配合物作为改变 PVA 结构和光学特性的新方法:可控光学带隙的聚合物复合材料制造新领域

阅读:7
作者:Dana S Muhammad, Dara M Aziz, Shujahadeen B Aziz

Abstract

The current study employed a novel approach to design polymer composites with modified structural and declined optical band gaps. The results obtained in the present work for polymer composites can be considered an original method to make a new field for research based on green chemistry. Natural dyes extracted from green tea were mixed with hydrated zinc acetate (Zn(CH3COO)2·2H2O) to produce a metal complex. FTIR results comprehensively established the formation of the Zn-metal complex. The interaction among various components of PVA : Zn-metal complex composite was investigated using FTIR spectroscopy. The non-existence of anion bands of acetate in the Zn-metal complex spectrum confirms the formation of the Zn-metal complex. XRD analysis reveals that the Zn-metal complex improves the amorphous phase of the PVA-based composites. The absorption edge of the doped films shifted towards the lower photon energies. Optical dielectric properties were used to determine N/m*, ε ∞, τ, μ opt, ω p, and ρ opt; the W-D model was used to calculate E d, E o and n o parameters. The optical dielectric loss parameter was used to determine the optical band gap while the Tauc model was employed to identify various types of electron transitions. The optical energy band gap was 6.05 eV for clean PVA while it decreased to 1 eV for PVA inserted with the Zn-metal complex. The increase in Urbach energy from 0.26 eV to 0.45 eV is an evidence of the boost of amorphous phases in PVA : Zn-metal complex composites. The nonlinear refractive index and the first-order and second-order nonlinear optical susceptibilities were determined. The value of E o obtained from the W-D model closely matches the optical energy band gap obtained from the Tauc model, which indicates the precision of the analysis in the present study. The increase in SELF and VELF in the composite films establishes that new energy states assigned to the added Zn-metal complex amplify the probability of light-matter interaction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。