Restriction Enzyme Based Enriched L1Hs Sequencing (REBELseq): A Scalable Technique for Detection of Ta Subfamily L1Hs in the Human Genome

基于限制性酶的富集 L1Hs 测序 (REBELseq):一种用于检测人类基因组中 Ta 亚家族 L1Hs 的可扩展技术

阅读:5
作者:Benjamin C Reiner, Glenn A Doyle, Andrew E Weller, Rachel N Levinson, Esin Namoglu, Alicia Pigeon, Emilie Dávila Perea, Cynthia Shannon Weickert, Gustavo Turecki, Deborah C Mash, Richard C Crist, Wade H Berrettini

Abstract

Long interspersed element-1 retrotransposons (LINE-1 or L1) are ∼6 kb mobile DNA elements implicated in the origins of many Mendelian and complex diseases. The actively retrotransposing L1s are mostly limited to the L1 human specific (L1Hs) transcriptional active (Ta) subfamily. In this manuscript, we present REBELseq as a method for the construction of Ta subfamily L1Hs-enriched next-generation sequencing libraries and bioinformatic identification. REBELseq was performed on DNA isolated from NeuN+ neuronal nuclei from postmortem brain samples of 177 individuals and empirically-driven bioinformatic and experimental cutoffs were established. Putative L1Hs insertions passing bioinformatics cutoffs were experimentally validated. REBELseq reliably identified both known and novel Ta subfamily L1Hs insertions distributed throughout the genome. Differences in the proportion of individuals possessing a given reference or non-reference retrotransposon insertion were identified. We conclude that REBELseq is an unbiased, whole genome approach to the amplification and detection of Ta subfamily L1Hs retrotransposons.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。