Induced Proton Perturbation for Sensitive and Selective Detection of Tight Junction Breakdown

诱导质子扰动实现紧密连接击穿的灵敏和选择性检测

阅读:3
作者:Hiroaki Hatano, Tatsuro Goda, Akira Matsumoto, Yuji Miyahara

Abstract

Tight junctions (TJs) in the epithelial cell gap play primary roles in body defense and nutrient absorption in multicellular organisms. Standard in vitro assays lack sensitivity, selectivity, temporal resolution, and throughput for bioengineering applications. Prompted by the rigorous barrier functions of TJ, we developed a TJ assay that senses proton leaks in the cell gap using ion-sensitive field-effect transistors. Upon exposure of Madin-Darby canine kidney (MDCK) cells cultured on a gate dielectric to a calcium-chelator EGTA, ammonia-assisted pH perturbation was enhanced solely in TJ-forming cells. This was supported by simulations with increased ion permeability in the paracellular pathway. Following administration of Clostridium perfringens enterotoxin as a specific TJ inhibitor to the MDCK cells, our method detected TJ breakdown at a 13× lower concentration than a conventional trans-epithelial electrical resistance assay. Thus, the semiconductor-based active pH sensing could offer an alternative to current in vitro assays for TJs in pathological, toxicological, and pharmaceutical studies.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。