Electroacupuncture reduces corpus callosum injury in rats with permanent cerebral ischemia by inhibiting the activation of high-mobility group box 1 protein and the receptor for advanced glycation end products

电针抑制高迁移率族蛋白B1和晚期糖基化终产物受体的激活减轻永久性脑缺血大鼠胼胝体损伤

阅读:8
作者:Chenyu Li, Zeyin Nie, Huachun Miao, Feng Wu, Xiuxiu Wang

Abstract

Previous studies have shown that cerebral ischemia can cause white matter injury in the brain. This study aimed to investigate the potential mechanism of electroacupuncture (EA) at the Baihui (GV20) and Zusanli (ST36) acupoints in protecting white matter. Sprague-Dawley rats were used to establish permanent middle cerebral artery occlusion (pMCAO) rat models. Comprehensive motor functions were assessed using the mesh experiment. Morphological changes in the myelin sheath were assessed with Luxol fast blue staining. Morphological changes in oligodendrocytes and myelinated axons were evaluated using Nissl staining. The expressions of high-mobility group box 1 protein (HMGB1) and the receptor for advanced glycation end products (RAGE) in the corpus callosum were detected by immunohistochemical staining and Western blot analysis. pMCAO caused severe injury to the corpus callosum, evidenced by significant loss of white matter fibers and myelinated axons, and induced overexpression of HMGB1 and RAGE in the corpus callosum. EA treatment significantly improved comprehensive motor function alleviated white matter damage, and downregulated the expression of HMGB1 and RAGE. Its effects were comparable to those of FPS-ZM1, a RAGE receptor inhibitor. In conclusion, EA effectively improves comprehensive motor function in rats with cerebral infarction and alleviates corpus callosum injury. This effect may be related to the inhibition of HMGB1 and RAGE overexpression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。