Contribution of Iron-Transport Systems and β-Lactamases to Cefiderocol Resistance in Clinical Isolates of Acinetobacter baumannii Endemic to New York City

铁转运系统和 β-内酰胺酶对纽约市流行鲍曼不动杆菌临床分离株头孢地洛耐药性的贡献

阅读:6
作者:Habtamu Asrat, Jevon Samaroo-Campbell, Subhan Ata, John Quale

Abstract

The development of resistance to cefiderocol among multidrug resistant Acinetobacter baumannii has been attributed to downregulation in iron transport systems and a variety of β-lactamases. However, the precise contribution of each in clinical isolates remains to be determined. Sixteen clinical isolates with varying degrees of cefiderocol resistance were investigated. Susceptibility testing was performed with and without the presence of iron and avibactam. Expression of 10 iron transport systems and blaADC and blaOXA-51-type were analyzed by real time RT-PCR. The acquisition of a variety of β-lactamases was also determined. In 2 isolates the impact of silencing the blaADC gene was achieved using a target specific group II intron. For most resistant isolates, MICS for cefiderocol were similar with or without the presence of iron, and there was an overall decrease in expression of receptors (including pirA and piuA) involved in ferric uptake. However, expression of the ferrous uptake system (faoA) persisted. The addition of avibactam (4 μg/mL) lowered most cefiderocol MICs to 2 to 4 μg/mL. Most isolates possessed ADC-25 or ADC-33. Cefiderocol resistance correlated with over-expression of blaADC; silencing of this β-lactamase resulted in a ≥ 8-fold decrease in cefiderocol MICs. Over-expression of specific blaADC subtypes, in a background of generalized repression of ferric uptake systems, were consistent features in clinical isolates of cefiderocol-resistant A. baumannii.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。