Blocking of BDNF-TrkB signaling inhibits the promotion effect of neurological function recovery after treadmill training in rats with spinal cord injury

阻断BDNF-TrkB信号抑制跑步机训练对脊髓损伤大鼠神经功能恢复的促进作用

阅读:6
作者:Xiangzhe Li, Qinfeng Wu, Caizhong Xie, Can Wang, Qinghua Wang, Chuanming Dong, Lu Fang, Jie Ding, Tong Wang

Conclusion

The BDNF-TrkB signaling is a critical pathway in exercise training that promotes the recovery of neurological function in rats with incomplete SCI.

Methods

Forty rats were divided into five groups: (i) Sham; (ii) SCI and phosphate-buffered saline (PBS) (SCI/PBS); (iii) SCI-TT/PBS; (iv) SCI/TrkB-IgG; and (v) SCI-TT/TrkB-IgG. The intrathecal catheter and T10 contusion SCI model was established. At 7-day post SCI, the BDNF-TrkB signaling was blocked by TrkB-IgG. Exercise began at 8th day after SCI and continued for 4 weeks. The BBB scale and motor-evoked potential (MEP) were used for the evaluation of the locomotor functions. The BDNF/TrkB, PSD-95, SYP synthesis, and neuroprotective effect was determined by western blot, Nissl, or immunohistochemistry staining.

Results

The expression of BDNF and TrkB in the SCI-TT/PBS group was 1.46 ± 0.09 and 1.70 ± 0.22, respectively, higher than that in SCI/PBS group (0.51 ± 0.04 and 0.76 ± 0.07, respectively), relative to the Sham group. The BBB scores in the Sham, SCI/PBS, SCI-TT/PBS, SCI/TrkB-IgG, and SCI-TT/TrkB-IgG groups were 21.00 ± 0.00, 7.63 ± 0.74, 12.13 ± 1.36, 7.88 ± 0.64, and 8.75 ± 0.88, respectively. The percentages of MEP responders/non-responders were 100, 0, 75, 0, and 50%. The MEP latencies in Sham, SCI-TT/PBS, and SCI-TT/TrkB-IgG groups were 6.65 ± 0.19, 13.32 ± 2.95, and 19.55 ± 4.55 ms, respectively. The number of NeuN+ neurons, the cell body area of motor neurons, PSD-95, and SYP expression in the SCI-TT/PBS group was significantly higher than that in the SCI/PBS, SCI/TrkB-IgG, and SCI-TT/TrkB-IgG groups.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。