Cinnamaldehyde, Carvacrol and Organic Acids Affect Gene Expression of Selected Oxidative Stress and Inflammation Markers in IPEC-J2 Cells Exposed to Salmonella typhimurium

肉桂醛、香芹酚和有机酸影响暴露于鼠伤寒沙门氏菌的 IPEC-J2 细胞中选择性氧化应激和炎症标志物的基因表达

阅读:6
作者:Sara A Burt, Simone J M Adolfse, Dina S A Ahad, Monique H G Tersteeg-Zijderveld, Betty G M Jongerius-Gortemaker, Jan A Post, Holger Brüggemann, Regiane R Santos

Abstract

Essential oils and organic acids are used as feed additives to improve health status and reduce colonization with pathogens. Although bactericidal in vitro, concentrations achieved in the animal gut are probably not lethal to pathogens. The aim of this study was to investigate the effects of cinnamaldehyde, carvacrol and cinnamic, lactic and propionic acids on the ability of Salmonella typhimurium ATCC 14028 (ST) to invade intestinal epithelial cells (IPEC-J2) and on the expression levels of immune related genes in the cells. The minimum inhibitory concentration (MIC) and non-inhibitory concentration (NIC) were determined and influence on the invasion capacity of ST was investigated. The structure of fimbriae and flagella was analysed by electron microscopy, and expression levels of HSP70, IkBa, IL-8 and IL-10 in the IPEC-J2 cells were carried out by q-PCR. Cinnamaldehyde, carvacrol and cinnamic and propionic acids inhibited ST invasion but not cell viability, bacterial viability and motility or the development of flagella. Propionic acid and cinnamaldehyde in combination with cinnamic acid caused structural impairment of fimbriae. Cinnamaldehyde up-regulated expression of HSP70 irrespective of the presence of organic acids or ST; exposure to carvacrol induced HSP70 only in the presence of propionic acid and ST. © 2016 The Authors. Phytotherapy Research published by John Wiley & Sons Ltd.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。