Proteomic landscape profiling of primary prostate cancer reveals a 16-protein panel for prognosis prediction

原发性前列腺癌的蛋白质组学图谱揭示了可用于预后预测的 16 种蛋白质组

阅读:7
作者:Rui Sun, Jun A, Haolan Yu, Yan Wang, Miaoxia He, Lingling Tan, Honghan Cheng, Jili Zhang, Yingrui Wang, Xiaochen Sun, Mengge Lyu, Min Qu, Lingling Huang, Zijian Li, Wenhui Zhang, Kunpeng Ma, Zhenyang Dong, Weigang Ge, Yun Zhang, Xuan Ding, Bo Yang, Jianguo Hou, Chuanliang Xu, Linhui Wang, Yi Zhu, Ti

Abstract

Prostate cancer (PCa) is the most common malignant tumor in men. Currently, there are few prognosis indicators for predicting PCa outcomes and guiding treatments. Here, we perform comprehensive proteomic profiling of 918 tissue specimens from 306 Chinese patients with PCa using data-independent acquisition mass spectrometry (DIA-MS). We identify over 10,000 proteins and define three molecular subtypes of PCa with significant clinical and proteomic differences. We develop a 16-protein panel that effectively predicts biochemical recurrence (BCR) for patients with PCa, which is validated in six published datasets and one additional 99-biopsy-sample cohort by targeted proteomics. Interestingly, this 16-protein panel effectively predicts BCR across different International Society of Urological Pathology (ISUP) grades and pathological stages and outperforms the D'Amico risk classification system in BCR prediction. Furthermore, double knockout of NUDT5 and SEPTIN8, two components from the 16-protein panel, significantly suppresses the PCa cells to proliferate, invade, and migrate, suggesting the combination of NUDT5 and SEPTIN8 may provide new approaches for PCa treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。