Identification and Validation of Anoikis-Related Signatures for Predicting Prognosis in Lung Adenocarcinoma with Machine Learning

利用机器学习识别和验证细胞凋亡相关特征以预测肺腺癌预后

阅读:4
作者:Qilong Wang, Nannan Sun, Mingzhi Zhang

Background

Lung adenocarcinoma (LUAD) is an aggressive cancer that has an extremely poor prognosis. As well as facilitating the detachment of cancer cells from the primary tumor site, anoikis plays an important role in cancer metastasis. Few studies to date, however, have examined the role of anoikis in LUAD, in patient prognosis.

Conclusion

Our anoikis-related signature from RNA-seq data may be a novel prognostic biomarker in patients with LUAD. It may help physicians develop personalized LUAD treatments in clinical practice. Moreover, ITGB4 may affect the development of LUAD through the oxidative phosphorylation pathway.

Methods

A total of 316 anoikis-related genes (ANRGs) integrated from Genecards and Harmonizome portals. LUAD transcriptome data were retrieved from the Genotype-Tissue Expression Project (GEO) and The Cancer Genome Atlas (TCGA). Anoikis-related prognostic genes (ANRGs) were primarily screened by univariate Cox regression. All ANRGs were included in the Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression model to construct the powerful prognostic signature. This signature was validated and assessed using the Kaplan-Meier method as well as univariate and multivariate Cox regression analyses. Anoikis-related regulators of risk score were identified using a XG-boost machine learning model. The expression of ITGB4 protein was examined in a ZhengZhou University (ZZU) tissue cohort by immunohistochemistry, and the potential mechanisms of action of ITGB4 in LUAD were explored by GO, KEGG, and ingenuity pathway analyses and by GSEA.

Results

A risk score signature was constructed based on eight ANRGs, with high risk scores found to closely correlate with unfavorable clinical features. ITGB4 expression may be associated with 5-year over survival, with immunohistochemistry showed that the expression of ITGB4 was higher in LUAD than in nontumor tissues. Enrichment analysis suggested that ITGB4 may promote LUAD development by targeting E2F, MYC, and oxidative phosphorylation signaling pathways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。