Nongenomic, glucocorticoid receptor-mediated regulation of serotonin transporter cell surface expression in embryonic stem cell derived serotonergic neurons

非基因组、糖皮质激素受体介导的胚胎干细胞衍生的血清素转运蛋白细胞表面表达的调节

阅读:4
作者:Thorsten Lau, Felix Heimann, Dusan Bartsch, Patrick Schloss, Tillmann Weber

Abstract

Depressive disorders have been linked to the combined dysregulation of the hypothalamus-pituitary-adrenal (HPA)-axis and the serotonergic system. The HPA-axis and serotonergic (5-HT) neurons exert reciprocal regulatory actions. It has been reported that glucocorticoid-glucocorticoid receptor (GR) signaling influences serotonin transporter (5-HTT) transcription but data also points to the fact that 5-HTT expression is regulated nongenomically via redistribution of 5-HTT from the cell surface into intracellular compartments. In order to analyze the acute effects of glucocorticoids on 5-HTT cell surface localization we differentiated serotonergic neurons from mouse embryonic stem (ES) cells derived from the C57BL/6N blastocysts. These postmitotic 5-HT neurons express all relevant serotonergic markers following the application of a growth factor-based differentiation protocol. Increasing concentrations of the GR agonist dexamethasone (Dex) resulted in enhanced, dose-dependent 5-HTT cell surface localization in the presence of the protein synthesis inhibitor cycloheximide already 1h after incubation. Inhibition of GR function by the specific GR-antagonist mifepristone abolished the increase in 5-HTT cell surface localization. Hence, our data account for a nongenomic upregulation of 5-HTT cell surface expression by glucocorticoid-GR interaction which likely constitutes a rapid physiological response to increased levels of glucocorticoids as seen during stress. Taken together, we provide a cellular model to analyze and dissect glucocorticoid-5HTT interactions on a molecular level that corresponds to in vivo animal models using C57BL/6N mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。