Microenvironmental Stiffness Regulates Dental Papilla Cell Differentiation: Implications for the Importance of Fibronectin-Paxillin-β-Catenin Axis

微环境硬度调节牙乳头细胞分化:对纤连蛋白-桩蛋白-β-连环蛋白轴重要性的影响

阅读:9
作者:Mingru Bai, Jing Xie, Xiaoyu Liu, Xia Chen, Wenjing Liu, Fanzi Wu, Dian Chen, Yimin Sun, Xin Li, Chenglin Wang, Ling Ye

Abstract

The mechanical stiffness of substrates is recognized to be an important physical cue in the microenvironment of local cellular residents in mammalian species due to their great capacity in regulating cell behavior. Dental papilla cells (DPCs) play an important role in the field of dental tissue engineering for their stem cell-like properties. Therefore, it is essential to provide the suitable microenvironment by combining with the physical cues of biomaterials for DPCs to carry out the function of effective tissue regeneration. However, how the substrate stiffness influences the odontogenic differentiation of DPCs is still unclear. Thus, we fabricated poly(dimethylsiloxane) substrates with varied stiffness for cell behavior. Both cell morphology and focal adhesion were shown to have significant changes in response to varied stiffness. Paxillin, an important protein adapter of focal adhesion kinase protein, was shown to interact with both ectoplasmic fibronectin and cytoplasmic β-catenin by coimmunoprecipitation. The resultant changes of β-catenin by varied stiffness were confirmed by immunofluorescent stain and western blotting. Further, the higher quantity nuclear translocation of β-catenin and the less phospho-β-catenin on the stiff substrate were detected. This nuclear translocation in the stiff substrate finally led to an increased mineralization of DPCs relative to the soft substrate detected by Von Kossa and Alizarin Red stain. Taken together, this work not only points out that the substrate stiffness can regulate the odontogenic differentiation potential of DPCs via fibronectin/paxillin/β-catenin pathway but also provides significant consequence for biomechanical control of cell behavior in cell-based tooth tissue regeneration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。