Dimethylarginine Dimethylaminohydrolase 1 Protects Against High-Fat Diet-Induced Hepatic Steatosis and Insulin Resistance in Mice

二甲基精氨酸二甲基氨基水解酶 1 可预防小鼠高脂饮食引起的肝脂肪变性和胰岛素抵抗

阅读:5
作者:Tianhe Li, Run Feng, Chenyang Zhao, Yue Wang, Jian Wang, Shasha Liu, Jianwei Cao, Hongyun Wang, Ting Wang, Yuting Guo, Zhongbing Lu

Aims

High plasma concentrations of asymmetric dimethylarginine (ADMA), an endogenous nitric oxide synthase inhibitor, are associated with hepatic dysfunction in patients with nonalcoholic fatty liver disease (NAFLD). However, it is unknown whether ADMA is involved in the pathogenesis of NAFLD. Dimethylarginine dimethylaminohydrolase 1 (DDAH1) is an enzyme that degrades ADMA. In this study, we used Ddah1-/- mice to investigate the effects of the ADMA/DDAH1 pathway on high-fat diet (HFD)-induced hepatic steatosis.

Conclusion

Our results provide the first direct evidence that the ADMA/DDAH1 pathway has a marked effect on hepatic lipogenesis and steatosis induced by HFD feeding. Our findings suggest that strategies to increase DDAH1 activity in hepatocytes may provide a novel approach to attenuate NAFLD development. Antioxid. Redox Signal. 26, 598-609.

Results

After HFD feeding for 20 weeks, Ddah1-/- mice were more obese and had developed more severe hepatic steatosis and worse insulin resistance compared with wild-type (WT) mice. In the livers of HFD-fed mice, loss of DDAH1 resulted in higher levels of lipogenic genes, lower expression of β-oxidation genes, and greater induction of oxidative stress, endoplasmic reticulum stress, and inflammation than in the WT livers. Furthermore, ADMA treatment in HepG2 cells led to oxidative stress and steatosis, whereas overexpression of DDAH1 attenuated palmitic acid-induced steatosis, oxidative stress, and inflammation. Innovation and

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。