Impact of the Monocarboxylate Transporter-1 (MCT1)-Mediated Cellular Import of Lactate on Stemness Properties of Human Pancreatic Adenocarcinoma Cells †

单羧酸转运蛋白-1(MCT1)介导的乳酸细胞输入对人类胰腺腺癌细胞干性特性的影响†

阅读:6
作者:Leontine Sandforth, Nourhane Ammar, Lisa Antonia Dinges, Christoph Röcken, Alexander Arlt, Susanne Sebens, Heiner Schäfer

Abstract

Metabolite exchange between stromal and tumor cells or among tumor cells themselves accompanies metabolic reprogramming in cancer including pancreatic adenocarcinoma (PDAC). Some tumor cells import and utilize lactate for oxidative energy production (reverse Warburg-metabolism) and the presence of these "reverse Warburg" cells associates with a more aggressive phenotype and worse prognosis, though the underlying mechanisms are poorly understood. We now show that PDAC cells (BxPc3, A818-6, T3M4) expressing the lactate-importer monocarboxylate transporter-1 (MCT1) are protected by lactate against gemcitabine-induced apoptosis in a MCT1-dependent fashion, contrary to MCT1-negative PDAC cells (Panc1, Capan2). Moreover, lactate administration under glucose starvation, resembling reverse Warburg co a phenotype of BxPc3 and T3M4 cells that confers greater potential of clonal growth upon re-exposure to glucose, along with drug resistance and elevated expression of the stemness marker Nestin and reprogramming factors (Oct4, KLF4, Nanog). These lactate dependent effects on stemness properties are abrogated by the MCT1/lactate-uptake inhibitor 7ACC2 or MCT1 knock-down. Furthermore, the clinical relevance of these observations was supported by detecting co-expression of MCT1 and reprogramming factors in human PDAC tissues. In conclusion, the MCT1-dependent import of lactate supplies "reverse Warburg "PDAC cells with an efficient driver of metabostemness. This condition may essentially contribute to malignant traits including therapy resistance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。