Ventromedial hypothalamic nucleus glycogen regulation of metabolic-sensory neuron AMPK and neurotransmitter expression: role of lactate

下丘脑腹内侧核糖原调节代谢感觉神经元 AMPK 和神经递质表达:乳酸的作用

阅读:6
作者:Khaggeswar Bheemanapally, Mostafa M H Ibrahim, Ayed Alshamrani, Karen P Briski

Abstract

Astrocyte glycogen is dynamically remodeled during metabolic stability and provides oxidizable l-lactate equivalents during neuroglucopenia. Current research investigated the hypothesis that ventromedial hypothalamic nucleus (VMN) glycogen metabolism controls glucostimulatory nitric oxide (NO) and/or glucoinhibitory gamma-aminobutyric acid (GABA) neuron 5'-AMP-activated protein kinase (AMPK) and transmitter marker, e.g., neuronal nitric oxide synthase (nNOS), and glutamate decarboxylase65/67 (GAD) protein expression. Adult ovariectomized estradiol-implanted female rats were injected into the VMN with the glycogen phosphorylase inhibitor 1,4-dideoxy-1,4-imino-d-arabinitol (DAB) before vehicle or l-lactate infusion. Western blot analysis of laser-catapult-microdissected nitrergic and GABAergic neurons showed that DAB caused lactate-reversible upregulation of nNOS and GAD proteins. DAB suppressed or increased total AMPK content of NO and GABA neurons, respectively, by lactate-independent mechanisms, but lactate prevented drug enhancement of pAMPK expression in nitrergic neurons. Inhibition of VMN glycogen disassembly caused divergent changes in counter-regulatory hormone, e.g. corticosterone (increased) and glucagon (decreased) secretion. Outcomes show that VMN glycogen metabolism controls local glucoregulatory transmission by means of lactate signal volume. Results implicate glycogen-derived lactate deficiency as a physiological stimulus of corticosterone release. Concurrent normalization of nitrergic neuron nNOS and pAMPK protein and corticosterone secretory response to DAB by lactate infers that the hypothalamic-pituitary-adrenal axis may be activated by VMN NO-mediated signals of cellular energy imbalance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。