Significance
In many tissues, such as renal tubules or intestinal villi, epithelial layers exist in naturally curved forms, a geometry that is not reproduced by flat cultures. Because maintaining tubular structure is critical for kidney function, it is important to understand how topographical cues, such as curvature, might alter cell morphology and biological characteristics. We found that cellular architecture on curved substrates was closely related to cell type and density, as well as the sign and degree of the curvature. Moreover, substrate curvature contributed to cell polarization by enhancing the expression of apical and basolateral cell markers with height increase. Our results suggested that substrate curvature might contribute to cellular architecture and enhance the polarization of kidney tubule cells.
Statement of significance
In many tissues, such as renal tubules or intestinal villi, epithelial layers exist in naturally curved forms, a geometry that is not reproduced by flat cultures. Because maintaining tubular structure is critical for kidney function, it is important to understand how topographical cues, such as curvature, might alter cell morphology and biological characteristics. We found that cellular architecture on curved substrates was closely related to cell type and density, as well as the sign and degree of the curvature. Moreover, substrate curvature contributed to cell polarization by enhancing the expression of apical and basolateral cell markers with height increase. Our results suggested that substrate curvature might contribute to cellular architecture and enhance the polarization of kidney tubule cells.
