β-Catenin Signaling Evokes Hair Follicle Senescence by Accelerating the Differentiation of Hair Follicle Mesenchymal Progenitors

β-Catenin 信号通过加速毛囊间充质祖细胞的分化引发毛囊衰老

阅读:9
作者:Jimin Han, Kaijun Lin, Huiqin Choo, Jia He, Xusheng Wang, Yaojiong Wu, Xiaodong Chen

Conclusion

β-catenin signaling drove HF senescence by accelerating differentiation of CD34+ hfDSCs, resulting in phenotypes attributable to the differentiation of the hfDSCs into DP cells and the loss of their stem cell potential. Therefore, our study reveals that the regulation of β-catenin signaling in hfDSCs may potentially become an important subject for future exploration in development of clinically effective therapies for hair loss treatment and an excellent model for revealing new therapeutic approaches to reverse aging or retarding the development of alopecia.

Methods

A new CD34CrePGR mouse line was generated. Through fate-tracing models and a series of β-catenin genetic experiments, our study depicts how the wound environment increases phosphorylated β-catenin in hfDSCs and facilitates their differentiation into dermal papilla (DP) and dermal sheath (DS). In mice carrying hfDSC-specific activated allele of β-catenin, hfDSCs accelerated their differentiation into DP cells.

Results

Notably, with β-catenin stabilization in CD34-expressing cells and potential activation of canonical Wnt signaling, the mutant mice showed a brief increase of hair density in the short term, but over time leads to a senescence phenotype developing premature canities and thinning [hair follicle (HF) miniaturization].

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。