Neuroprotective Effects of Gabapentin Against Cerebral Ischemia Reperfusion-Induced Neuronal Autophagic Injury via Regulation of the PI3K/Akt/mTOR Signaling Pathways

加巴喷丁通过调控 PI3K/Akt/mTOR 信号通路对脑缺血再灌注诱导的神经元自噬损伤发挥神经保护作用

阅读:7
作者:Bing Chun Yan, Jie Wang, Yanggang Rui, Jianwen Cao, Pei Xu, Dan Jiang, Xiaolu Zhu, Moo-Ho Won, Ping Bo, Peiqing Su

Abstract

Gabapentin (GBP), an analgesic, adjunct antiepileptic, and migraine prophylactic drug, reduces neuronal injury induced by cerebral ischemia reperfusion (IR). However, the underlying biological molecular mechanism of GBP neuroprotection is not clear. In this study, we confirmed that dose-dependent (75 and 150 mg/kg) GBP treatment could significantly reduce IR-induced neuronal death. IR-induced neuronal death was inhibited by pretreatment with 150 mg/kg GBP in a middle cerebral artery occlusion rat model. In addition, 150 mg/kg GBP treatment remarkably promoted the levels of antioxidants and reduced the autophagy of neurons in the infarct penumbra. Moreover, the phosphoinositide-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway was activated by pretreatment with 150 mg/kg GBP, as detected by Western blot analyses. In vitro, pretreatment of PC12 cells with 450 µM GBP significantly reduced cell death induced by oxygen-glucose deprivation, increased antioxidant function, and reduced the levels of autophagy and reactive oxygen species via activation of the PI3K/Akt/mTOR pathway. This neuroprotection by GBP was inhibited significantly by 10 µM LY294002. In summary, dose-dependent pretreatment with GBP protected against cerebral IR injury via activation of the PI3K/Akt/mTOR pathway, which provided a neuroprotective function to inhibit oxidative stress-related neuronal autophagy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。