Controlling the regioselectivity and stereospecificity of FAD-dependent polyamine oxidases with the use of amine-attached guide molecules as conformational modulators

利用胺基连接的引导分子作为构象调节剂来控制 FAD 依赖性多胺氧化酶的区域选择性和立体特异性

阅读:6
作者:Tuomo A Keinänen, Nikolay Grigorenko, Alex R Khomutov, Qingqiu Huang, Anne Uimari, Leena Alhonen, Mervi T Hyvönen, Jouko Vepsäläinen

Abstract

Enzymes generally display strict stereospecificity and regioselectivity for their substrates. Here by using FAD-dependent human acetylpolyamine oxidase (APAO), human spermine (Spm) oxidase (SMOX) and yeast polyamine oxidase (Fms1), we demonstrate that these fundamental properties of the enzymes may be regulated using simple guide molecules, being either covalently attached to polyamines or used as a supplement to the substrate mixtures. APAO, which naturally metabolizes achiral N1-acetylated polyamines, displays aldehyde-controllable stereospecificity with chiral 1-methylated polyamines, like (R)- and (S)-1-methylspermidine (1,8-diamino-5-azanonane) (1-MeSpd). Among the novel N1-acyl derivatives of MeSpd, isonicotinic acid (P4) or benzoic acid (Bz) with (R)-MeSpd had Km of 3.6 ± 0.6/1.2 ± 0.7 µM and kcat of 5.2 ± 0.6/4.6 ± 0.7 s-1 respectively, while N1 -AcSpd had Km 8.2 ± 0.4 µM and kcat 2.7 ± 0.0 s-1 On the contrary, corresponding (S)-MeSpd amides were practically inactive (kcat < 0.03 s-1) but they retained micromole level Km for APAO. SMOX did not metabolize any of the tested compounds (kcat < 0.05 s-1) that acted as non-competitive inhibitors having Ki ≥ 155 µM for SMOX. In addition, we tested (R,R)-1,12-bis-methylspermine (2,13-diamino-5,10-diazatetradecane) (R,R)-(Me2Spm) and (S,S)-Me2Spm as substrates for Fms1. Fms1 preferred (S,S)- to (R,R)-diastereoisomer, but with notably lower kcat in comparison with spermine. Interestingly, Fms1 was prone to aldehyde supplementation in its regioselectivity, i.e. the cleavage site of spermidine. Thus, aldehyde supplementation to generate aldimines or N-terminal substituents in polyamines, i.e. attachment of guide molecule, generates novel ligands with altered charge distribution changing the binding and catalytic properties with polyamine oxidases. This provides means for exploiting hidden capabilities of polyamine oxidases for controlling their regioselectivity and stereospecificity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。