Disrupting ER-associated protein degradation suppresses the abscission defect of a weak hae hsl2 mutant in Arabidopsis

破坏内质网相关蛋白降解可抑制拟南芥弱 hae hsl2 突变体的脱落缺陷

阅读:5
作者:John Baer, Isaiah Taylor, John C Walker

Abstract

In Arabidopsis thaliana, the process of abscission, or the shedding of unwanted organs, is mediated by two genes, HAESA (HAE) and HAESA-LIKE 2 (HSL2), encoding receptor-like protein kinases (RLKs). The double loss-of-function mutant hae-3 hsl2-3 is completely deficient in floral abscission, but, interestingly, the hae-3 hsl2-9 mutant displays a less severe defect. This mutant was chosen for an ethyl methanesulfonate (EMS) screen to isolate enhancer and suppressor mutants, and two such suppressors are the focus of this study. Pooled DNA from the F2 generation of a parental backcross was analyzed by genome sequencing to reveal candidate genes, two of which complement the suppressor phenotype. These genes, EMS-MUTAGENIZED BRI1 SUPPRESSOR 3 (EBS3) and EBS4, both encode mannosyltransferases involved in endoplasmic reticulum (ER)-associated degradation (ERAD) of proteins. Further analysis of these suppressor lines revealed that suppressor mutations are acting solely on the partially functional hsl2-9 mutant receptor to modify the abscission phenotype. Expressing a hsl2-9-yellow fluorescent protein (YFP) transgene in ebs3 mutants yields a higher fluorescent signal than in EBS3/ebs3, suggesting that these mutants restore abscission by disrupting ERAD to allow accumulation of the hsl2-9 receptor, which probably escapes degradation to be trafficked to the plasma membrane to regain signaling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。