Targeting of NAD metabolism in pancreatic cancer cells: potential novel therapy for pancreatic tumors

靶向胰腺癌细胞中的 NAD 代谢:胰腺肿瘤的潜在新疗法

阅读:7
作者:Claudia C S Chini, Anatilde M Gonzalez Guerrico, Veronica Nin, Juliana Camacho-Pereira, Carlos Escande, Maria Thereza Barbosa, Eduardo N Chini

Conclusions

Our study demonstrates that NAD metabolism is essential for pancreatic cancer cell survival and proliferation and that targeting NAD synthesis via the Nampt pathway could lead to novel therapeutic treatments for pancreatic cancer.

Purpose

Here, we describe a novel interplay between NAD synthesis and degradation involved in pancreatic tumor growth. Experimental design: We used human pancreatic cancer cells, both in vitro (cell culture experiments) and in vivo (xenograft experiments), to demonstrate the role of NAD synthesis and degradation in tumor cell metabolism and growth.

Results

We demonstrated that pharmacologic and genetic targeting of Nampt, the key enzyme in the NAD salvage synthesis pathway, inhibits cell growth and survival of pancreatic cancer cells. These changes were accompanied by a reduction of NAD levels, glycolytic flux, lactate production, mitochondrial function, and levels of ATP. The massive reduction in overall metabolic activity induced by Nampt inhibition was accompanied by a dramatic decrease in pancreatic tumor growth. The results of the mechanistic experiments showed that neither the NAD-dependent enzymes PARP-1 nor SIRT1 play a significant role on the effect of Nampt inhibition on pancreatic cancer cells. However, we identified a role for the NAD degradation pathway mediated by the NADase CD38 on the sensitivity to Nampt inhibition. The responsiveness to Nampt inhibition is modulated by the expression of CD38; low levels of this enzyme decrease the sensitivity to Nampt inhibition. In contrast, its overexpression decreased cell growth in vitro and in vivo, and further increased the sensitivity to Nampt inhibition. Conclusions: Our study demonstrates that NAD metabolism is essential for pancreatic cancer cell survival and proliferation and that targeting NAD synthesis via the Nampt pathway could lead to novel therapeutic treatments for pancreatic cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。