Low cost, high efficiency flexible supercapacitor electrodes made from areca nut husk nanocellulose and silver nanoparticle embedded polyaniline

由槟榔壳纳米纤维素和嵌入银纳米粒子的聚苯胺制成的低成本、高效柔性超级电容器电极

阅读:4
作者:Soorya Sasi, C Ardra Krishna, Sunish K Sugunan, Akash Chandran, P Radhakrishnan Nair, K R V Subramanian, Suresh Mathew

Abstract

Energy storage is a key aspect in the smooth functioning of the numerous gadgets that aid easy maneuvering through modern life. Supercapacitors that store energy faradaically have recently emerged as potential inventions for which mechanical flexibility is an absolute requirement for their future applications. Flexible supercapacitors based on nanocellulose extracted from easily available waste materials via low cost methods have recently garnered great attention. In the present work, we discuss the construction of flexible, binder-free supercapacitive electrodes using nanocellulose extracted from locally available areca nut husks and polyaniline embedded with silver nanoparticles. The prepared electrodes were characterized using SEM, TEM, XRD, FTIR, EDX and electrochemical characterization techniques such as CV, galvanostatic charge-discharge, chronoamperometry and EIS. A specific capacitance of 780 F g-1 was obtained for the silver nanoparticle embedded polyaniline-nanocellulose (Ag-PANI-NC) substrate supported electrodes, which is ∼4.2 times greater than that of bare polyaniline-nanocellulose electrodes. We attributed this enhancement to a lowering of the activation energy barrier of correlated electron hopping among localized defect states in the composite matrix by the Ag nanoparticles. An energy density value of 15.64 W h kg-1 and a power density of 244.8 W kg-1 were obtained for the prepared electrodes. It was observed that the Ag-PANI-NC based electrode can retain ∼98% of its specific capacitance upon recovery from mechanical bending to extreme degrees.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。