Mn Doped AZIS/ZnS Nanocrystals (NCs): Effects of Ag and Mn Levels on NC Optical Properties

Mn 掺杂的 AZIS/ZnS 纳米晶体 (NC):Ag 和 Mn 含量对 NC 光学性能的影响

阅读:11
作者:Masoumeh Saber Zaeimian, Brandon Gallian, Clay Harrison, Yu Wang, Jialong Zhao, Xiaoshan Zhu

Abstract

In this work, Mn-doped AZIS/ZnS NCs were prepared using a nucleation doping approach with the tuning of Mn and Ag levels in their synthesis. The optical properties of Mn:AZIS/ZnS NCs are found to be significantly affected by Ag and Mn levels. Specifically, more Ag and Mn atoms in Mn:AZIS/ZnS NCs cause their fluorescence red-shift, and as the Ag or Mn level reaches a high threshold, the fluorescence lifetime of Mn:AZIS/ZnS NC has a significant drop. The reasons for the effects of Mn and Ag levels on NC optical properties were explored and discussed. Through this study, it is also found that with certain Ag and Mn levels in synthesis, some Mn:AZIS/ZnS NCs present optimal optical properties including high brightness (QY > 40%), long fluorescence lifetime (> 1.2 ms), low energy for excitation (excitable at 405 nm), and no reabsorption. The feasibility of the optimized NCs for time-gated fluorescence measurement using a portable/compact instrument was further demonstrated, which indicates the application potential of the NCs in time-gated biosensing including point-of-care testing. Notably, this study also discloses that Mn:AZIS/ZnS NCs with different lifetimes can be achieved by tuning Mn and Ag levels in synthesis, which may further broaden the applications of Mn:AZIS/ZnS NCs in multiplexing detection/measurement.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。