Neuron-specific knockdown of solute carrier protein SLC25A46a induces locomotive defects, an abnormal neuron terminal morphology, learning disability, and shortened lifespan

溶质载体蛋白 SLC25A46a 的神经元特异性敲低会导致运动缺陷、神经元末端形态异常、学习障碍和寿命缩短

阅读:15
作者:Md Saheb Ali, Kojiro Suda, Ryosuke Kowada, Ibuki Ueoka, Hideki Yoshida, Masamitsu Yamaguchi

Abstract

Various mutations in the SLC25A46 gene have been reported in mitochondrial diseases that are sometimes classified as type 2 Charcot-Marie-Tooth disease, optic atrophy, and Leigh syndrome. Although human SLC25A46 is a well-known transporter that acts through the mitochondrial outer membrane, the relationship between neurodegeneration in these diseases and the loss-of-function of SLC25A46 remains unclear. Two Drosophila genes, CG8931 (dSLC25A46a) and CG5755 (dSLC25A46b) have been identified as candidate homologs of human SLC25A46. We previously characterized the phenotypes of pan-neuron-specific dSLC25A46b knockdown flies. In the present study, we developed pan-neuron-specific dSLC25A46a knockdown flies and examined their phenotypes. Neuron-specific dSLC25A46a knockdown resulted in reduced mobility in larvae as well as adults. An aberrant morphology for neuromuscular junctions (NMJs), such as a reduced synaptic branch length and decreased number and size of boutons, was observed in dSLC25A46a knockdown flies. Learning ability was also reduced in the larvae of knockdown flies. In dSLC25A46a knockdown flies, mitochondrial hyperfusion was detected in NMJ synapses together with the accumulation of reactive oxygen species and reductions in ATP. These phenotypes were very similar to those of dSLC25A46b knockdown flies, suggesting that dSLC25A46a and dSLC25A46b do not have redundant roles in neurons. Collectively, these results show that the depletion of SLC25A46a leads to mitochondrial defects followed by an aberrant synaptic morphology, resulting in locomotive defects and learning disability. Thus, the dSLC25A46a knockdown fly summarizes most of the phenotypes in patients with mitochondrial diseases, offering a useful tool for studying these diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。