FTY720 ameliorates acute ischemic stroke in mice by reducing thrombo-inflammation but not by direct neuroprotection

FTY720 通过减少血栓炎症而不是直接的神经保护来改善小鼠的急性缺血性中风

阅读:8
作者:Peter Kraft, Eva Göb, Michael K Schuhmann, Kerstin Göbel, Carsten Deppermann, Ina Thielmann, Alexander M Herrmann, Kristina Lorenz, Marc Brede, Guido Stoll, Sven G Meuth, Bernhard Nieswandt, Waltraud Pfeilschifter, Christoph Kleinschnitz

Background and purpose

Lymphocytes are important players in the pathophysiology of acute ischemic stroke. The interaction of lymphocytes with endothelial cells and platelets, termed thrombo-inflammation, fosters microvascular dysfunction and secondary infarct growth. FTY720, a sphingosine-1-phosphate receptor modulator, blocks the egress of lymphocytes from lymphoid organs and has been shown to reduce ischemic neurodegeneration; however, the underlying mechanisms are unclear. We investigated the mode of FTY720 action in models of cerebral ischemia.

Conclusions

Induction of lymphocytopenia and concomitant reduction of microvascular thrombosis are key modes of FTY720 action in stroke. In contrast, our findings in Rag1(-/-) mice and cultured neurons argue against direct neuroprotective effects of FTY720.

Methods

Transient middle cerebral artery occlusion (tMCAO) was induced in wild-type and lymphocyte-deficient Rag1(-/-) mice treated with FTY720 (1 mg/kg) or vehicle immediately before reperfusion. Stroke outcome was assessed 24 hours later. Immune cells in the blood and brain were counted by flow cytometry. The integrity of the blood-brain barrier was analyzed using Evans Blue dye. Thrombus formation was determined by immunohistochemistry and Western blot, and was correlated with cerebral perfusion.

Purpose

Lymphocytes are important players in the pathophysiology of acute ischemic stroke. The interaction of lymphocytes with endothelial cells and platelets, termed thrombo-inflammation, fosters microvascular dysfunction and secondary infarct growth. FTY720, a sphingosine-1-phosphate receptor modulator, blocks the egress of lymphocytes from lymphoid organs and has been shown to reduce ischemic neurodegeneration; however, the underlying mechanisms are unclear. We investigated the mode of FTY720 action in models of cerebral ischemia.

Results

FTY720 significantly reduced stroke size and improved functional outcome in wild-type mice on day 1 and day 3 after transient middle cerebral artery occlusion. This protective effect was lost in lymphocyte-deficient Rag1(-/-) mice and in cultured neurons subjected to hypoxia. Less lymphocytes were present in the cerebral vasculature of FTY720-treated wild-type mice, which in turn reduced thrombosis and increased cerebral perfusion. In contrast, FTY720 was unable to prevent blood-brain barrier breakdown and transendothelial immune cell trafficking after transient middle cerebral artery occlusion. Conclusions: Induction of lymphocytopenia and concomitant reduction of microvascular thrombosis are key modes of FTY720 action in stroke. In contrast, our findings in Rag1(-/-) mice and cultured neurons argue against direct neuroprotective effects of FTY720.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。