Tryptase promotes breast cancer angiogenesis through PAR-2 mediated endothelial progenitor cell activation

类胰蛋白酶通过 PAR-2 介导的内皮祖细胞活化促进乳腺癌血管生成

阅读:6
作者:Neng Qian, Xiaobo Li, Xinhong Wang, Chungen Wu, Lianhua Yin, Xiuling Zhi

Abstract

Mast cells have been demonstrated to accumulate around and within solid tumors of numerous types, and express a number of pro-angiogenic compounds, including tryptase. They may serve an early role in angiogenesis within developing tumors. In the present study, the role and mechanism of tryptase in the activation of endothelial progenitor cells (EPCs) in breast cancer angiogenesis were evaluated. Human umbilical cord blood EPCs were isolated and cultured. MB-MDA-231 breast cancer cells were then pretreated with tryptase, and the conditioned medium was collected. The effects of tryptase on the migratory and angiogenesis abilities of EPCs were determined using wound-healing and tube formation assays, respectively. The effect of tryptase on the proliferation of EPCs was detected using a Cell Counting Kit-8 assay. Alterations in proteinase activated receptor (PAR)-2, phosphorylated (p)-protein kinase B (AKT), p-extracellular signal-regulated kinase (p-ERK) and vascular endothelial growth factor receptor (VEGFR)-2 expression were analyzed, in tryptase or conditioned medium-treated EPCs, by western blot analysis and reverse transcription-quantitative polymerase chain reaction. It was confirmed that the EPCs expressed PAR-2; and that tryptase treatment promoted the migration and tube formation of EPCs. Treatment with a PAR-2 agonist had a similar effect to tryptase, whereas treatment with a tryptase inhibitor, APC366, or a PAR-2 inhibitor, SAM 11, inhibited the effect of tryptase treatment. Tryptase and PAR-2 agonists did not affect the rate of EPC proliferation. MB-MDA-231 cells also expressed PAR-2. Treatment with tryptase or conditioned medium increased the expression of PAR-2, p-AKT, p-ERK and VEGFR-2 in EPCs. In conclusion, tryptase activated EPCs via PAR-2-mediated AKT and ERK signaling pathway activation, thereby enhancing angiogenesis in breast cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。