Transcriptome and Proteome Analysis in LUHMES Cells Overexpressing Alpha-Synuclein

过表达 Alpha-突触核蛋白的 LUHMES 细胞中的转录组和蛋白质组分析

阅读:9
作者:Matthias Höllerhage, Markus Stepath, Michael Kohl, Kathy Pfeiffer, Oscar Wing Ho Chua, Linghan Duan, Franziska Hopfner, Martin Eisenacher, Katrin Marcus, Günter U Höglinger

Abstract

LUHMES cells share many characteristics with human dopaminergic neurons in the substantia nigra, the cells, the demise of which is responsible for the motor symptoms in Parkinson's disease (PD). LUHMES cells can, therefore, be used bona fide as a model to study pathophysiological processes involved in PD. Previously, we showed that LUHMES cells degenerate after 6 days upon overexpression of wild-type alpha-synuclein. In the present study, we performed a transcriptome and proteome expression analysis in alpha-synuclein-overexpressing cells and GFP-expressing control cells in order to identify genes and proteins that are differentially regulated upon overexpression of alpha-synuclein. The analysis was performed 4 days after the initiation of alpha-synuclein or GFP overexpression, before the cells died, in order to identify processes that preceded cell death. After adjustments for multiple testing, we found 765 genes being differentially regulated (439 upregulated, 326 downregulated) and 122 proteins being differentially expressed (75 upregulated, 47 downregulated). In total, 21 genes and corresponding proteins were significantly differentially regulated in the same direction in both datasets, of these 13 were upregulated and 8 were downregulated. In total, 13 genes and 9 proteins were differentially regulated in our cell model, which had been previously associated with PD in recent genome-wide association studies (GWAS). In the gene ontology (GO) analysis of all upregulated genes, the top terms were "regulation of cell death," "positive regulation of programmed cell death," and "regulation of apoptotic signaling pathway," showing a regulation of cell death-associated genes and proteins already 2 days before the cells started to die. In the GO analysis of the regulated proteins, among the strongest enriched GO terms were "vesicle," "synapse," and "lysosome." In total, 33 differentially regulated proteins were associated with synapses, and 12 differentially regulated proteins were associated with the "lysosome", suggesting that these intracellular mechanisms, which had been previously associated with PD, also play an important role in our cell model.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。