Mutated SETBP1 activates transcription of Myc programs to accelerate CSF3R-driven myeloproliferative neoplasms

突变的 SETBP1 激活 Myc 程序的转录,从而加速 CSF3R 驱动的骨髓增生性肿瘤

阅读:6
作者:Sarah A Carratt, Garth L Kong, Brittany M Curtiss, Zachary Schonrock, Lauren Maloney, Breanna N Maniaci, Hunter Z Blaylock, Adrian Baris, Brian J Druker, Theodore P Braun, Julia E Maxson

Abstract

Colony stimulating factor 3 receptor (CSF3R) mutations lead to JAK pathway activation and are the molecular hallmark of chronic neutrophilic leukemia (CNL). Approximately half of patients with CNL also have mutations in SET binding protein 1 (SETBP1). In this study, we developed models of SETBP1-mutated leukemia to understand the role that SETBP1 plays in CNL. SETBP1 mutations promote self-renewal of CSF3R-mutated hematopoietic progenitors in vitro and prevent cells from undergoing terminal differentiation. In vivo, SETBP1 mutations accelerate leukemia progression, leading to the rapid development of hepatosplenomegaly and granulocytosis. Through transcriptomic and epigenomic profiling, we found that SETBP1 enhances progenitor-associated programs, most strongly upregulating Myc and Myc target genes. This upregulation of Myc can be reversed by LSD1 inhibitors. In summary, we found that SETBP1 mutations promote aggressive hematopoietic cell expansion when expressed with mutated CSF3R through the upregulation of Myc-associated gene expression programs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。