Lipoprotein(a) and vitamin C impair development of breast cancer tumors in Lp(a)+; Gulo-/- mice

脂蛋白a和维生素C可抑制Lpa+、Gulo-/-小鼠乳腺癌肿瘤的发展

阅读:6
作者:John Cha, M Waheed Roomi, Tatiana Kalinovsky, Aleksandra Niedzwiecki, Matthias Rath

Abstract

Cancer progression is characterized by loss of extracellular matrix (ECM) integrity, which is a precondition for tumor growth and metastasis. In order to elucidate the precise mechanisms of ECM degradation in cancer we used a genetically modified mouse mimicking two distinct human metabolic features associated with carcinogenesis, the lack of endogenous vitamin C synthesis and the production of human Lp(a). Female Lp(a)+; Gulo(-/-) and control wild-type Balb/c mice without these two metabolic features were orthotopically inoculated with 4T1 breast cancer cells (5x105). The transgenic and control mice were divided into 4 different dietary groups in respect to dietary vitamin C intake: i) low ascorbate intake for 6 weeks; ii) high ascorbate intake for 6 weeks; iii) low ascorbate intake for 3 weeks followed by high ascorbate for 3 weeks; iv) high ascorbate intake for 3 weeks followed by low ascorbate for 3 weeks. After 6 weeks, all wild-type mice developed tumors. In contrast, Lp(a)+; Gulo(-/-) mice developed one third less primary tumors (low ascorbate diet) or no primary tumors at all (high ascorbate diet). Significantly, tumors from Lp(a)+; Gulo(-/-) mice immunostained positively for Lp(a) and their size was inversely proportional to Lp(a) serum levels. The results implicate that Lp(a) may play a role in controlling tumor growth and expansion. The most likely mechanism is the competitive inhibition of plasmin-induced ECM degradation due to the homology of Lp(a) components to plasminogen. The confirmation of this pathomechanism could lead to a universal therapeutic target for the prevention and treatment of cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。