Significance
Mitral valve disease is a common cardiovascular condition that is often accompanied by fibrotic tissue remodeling. Valvular interstitial cells (VICs), the fibroblast-like cells that reside in heart valve leaflets, are thought to drive fibrosis during valve disease by differentiating into activated myofibroblasts. However, the signaling pathways that regulate this process in the mitral valve are not fully understood. In the present study, we cultured mitral VICs in collagen and poly(ethylene glycol) scaffolds designed to mimic the heart valve microenvironment and treated the cell-seeded scaffolds with cytokines. Using these 3D culture models, we found that the pro-inflammatory cytokines TNF-α and IL-1β downregulate myofibroblast and fibrosis markers in mitral VICs via the canonical NF-κB signaling pathway.
Statement of significance
Mitral valve disease is a common cardiovascular condition that is often accompanied by fibrotic tissue remodeling. Valvular interstitial cells (VICs), the fibroblast-like cells that reside in heart valve leaflets, are thought to drive fibrosis during valve disease by differentiating into activated myofibroblasts. However, the signaling pathways that regulate this process in the mitral valve are not fully understood. In the present study, we cultured mitral VICs in collagen and poly(ethylene glycol) scaffolds designed to mimic the heart valve microenvironment and treated the cell-seeded scaffolds with cytokines. Using these 3D culture models, we found that the pro-inflammatory cytokines TNF-α and IL-1β downregulate myofibroblast and fibrosis markers in mitral VICs via the canonical NF-κB signaling pathway.
