Tumor necrosis factor alpha and interleukin 1 beta suppress myofibroblast activation via nuclear factor kappa B signaling in 3D-cultured mitral valve interstitial cells

肿瘤坏死因子 α 和白细胞介素 1 β 通过核因子 κB 信号抑制 3D 培养二尖瓣间质细胞中的肌成纤维细胞活化

阅读:4
作者:Amadeus S Zhu, Tasneem Mustafa, Jennifer P Connell, K Jane Grande-Allen

Significance

Mitral valve disease is a common cardiovascular condition that is often accompanied by fibrotic tissue remodeling. Valvular interstitial cells (VICs), the fibroblast-like cells that reside in heart valve leaflets, are thought to drive fibrosis during valve disease by differentiating into activated myofibroblasts. However, the signaling pathways that regulate this process in the mitral valve are not fully understood. In the present study, we cultured mitral VICs in collagen and poly(ethylene glycol) scaffolds designed to mimic the heart valve microenvironment and treated the cell-seeded scaffolds with cytokines. Using these 3D culture models, we found that the pro-inflammatory cytokines TNF-α and IL-1β downregulate myofibroblast and fibrosis markers in mitral VICs via the canonical NF-κB signaling pathway.

Statement of significance

Mitral valve disease is a common cardiovascular condition that is often accompanied by fibrotic tissue remodeling. Valvular interstitial cells (VICs), the fibroblast-like cells that reside in heart valve leaflets, are thought to drive fibrosis during valve disease by differentiating into activated myofibroblasts. However, the signaling pathways that regulate this process in the mitral valve are not fully understood. In the present study, we cultured mitral VICs in collagen and poly(ethylene glycol) scaffolds designed to mimic the heart valve microenvironment and treated the cell-seeded scaffolds with cytokines. Using these 3D culture models, we found that the pro-inflammatory cytokines TNF-α and IL-1β downregulate myofibroblast and fibrosis markers in mitral VICs via the canonical NF-κB signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。