Thermoresponsive Poly(N, N'-dimethylacrylamide)-Based Diblock Copolymer Worm Gels via RAFT Solution Polymerization: Synthesis, Characterization, and Cell Biology Applications

通过 RAFT 溶液聚合制备热响应性聚(N, N'-二甲基丙烯酰胺)基二嵌段共聚物蠕虫凝胶:合成、表征及细胞生物学应用

阅读:4
作者:Damla Ulker, Thomas J Neal, Aileen Crawford, Steven P Armes

Abstract

RAFT solution polymerization is used to polymerize 2-hydroxypropyl methacrylate (HPMA). The resulting PHPMA precursor is then chain-extended using N,N'-dimethylacrylamide (DMAC) to produce a series of thermoresponsive PHPMA-PDMAC diblock copolymers. Such amphiphilic copolymers can be directly dispersed in ice-cold water and self-assembled at 20 °C to form spheres, worms, or vesicles depending on their copolymer composition. Construction of a pseudo-phase diagram is required to identify the pure worm phase, which corresponds to a rather narrow range of PDMAC DPs. Such worms form soft, free-standing gels in aqueous solution at around ambient temperature. Rheology studies confirm the thermoresponsive nature of such worms, which undergo a reversible worm-to-sphere on cooling below ambient temperature. This morphological transition leads to in situ degelation, and variable temperature 1H NMR studies indicate a higher degree of (partial) hydration for the weakly hydrophobic PHPMA chains at lower temperatures. The trithiocarbonate end-group located at the end of each PDMAC chain can be removed by treatment with excess hydrazine. The resulting terminal secondary thiol group can form disulfide bonds via coupling, which produces PHPMA-PDMAC-PHPMA triblock copolymer chains. Alternatively, this reactive thiol group can be used for conjugation reactions. A PHPMA141-PDMAC36 worm gel was used to store human mesenchymal stem cells (MSCs) for up to three weeks at 37 °C. MSCs retrieved from this gel subsequently underwent proliferation and maintained their ability to differentiate into osteoblastic cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。