Integrative transcriptomics and cell systems analyses reveal protective pathways controlled by Igfbp-3 in anthracycline-induced cardiotoxicity

整合转录组学和细胞系统分析揭示了Igfbp-3在蒽环类药物诱导的心脏毒性中控制的保护性通路

阅读:1
作者:Junjie Chen ,Douglas J Chapski ,Jeremy Jong ,Jerome Awada ,Yijie Wang ,Dennis J Slamon ,Thomas M Vondriska ,René R Sevag Packard

Abstract

Anthracyclines such as doxorubicin (Dox) are effective chemotherapeutic agents; however, their use is hampered by subsequent cardiotoxicity risk. Our understanding of cardiomyocyte protective pathways activated following anthracycline-induced cardiotoxicity (AIC) remains incomplete. Insulin-like growth factor binding protein (IGFBP) 3 (Igfbp-3), the most abundant IGFBP family member in the circulation, is associated with effects on the metabolism, proliferation, and survival of various cells. Whereas Igfbp-3 is induced by Dox in the heart, its role in AIC is ill-defined. We investigated molecular mechanisms as well as systems-level transcriptomic consequences of manipulating Igfbp-3 in AIC using neonatal rat ventricular myocytes and human-induced pluripotent stem cell-derived cardiomyocytes. Our findings reveal that Dox induces the nuclear enrichment of Igfbp-3 in cardiomyocytes. Furthermore, Igfbp-3 reduces DNA damage, impedes topoisomerase IIβ expression (Top2β) which forms Top2β-Dox-DNA cleavage complex leading to DNA double-strand breaks (DSB), alleviates detyrosinated microtubule accumulation-a hallmark of increased cardiomyocyte stiffness and heart failure-and favorably affects contractility following Dox treatment. These results indicate that Igfbp-3 is induced by cardiomyocytes in an effort to mitigate AIC. Keywords: Igfbp-3; NRVM; anthracycline; cardiomyocytes; cardioprotection; cardiotoxicity; doxorubicin; iPSC-CM; transcriptomics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。