Suppression of antibiotic resistance evolution by single-gene deletion

通过单基因缺失抑制抗生素耐药性的进化

阅读:5
作者:Takaaki Horinouchi, Tomoya Maeda, Hazuki Kotani, Chikara Furusawa

Abstract

Antibiotic treatment generally results in the selection of resistant bacterial strains, and the dynamics of resistance evolution is dependent on complex interactions between cellular components. To better characterize the mechanisms of antibiotic resistance and evaluate its dependence on gene regulatory networks, we performed systematic laboratory evolution of Escherichia coli strains with single-gene deletions of 173 transcription factors under three different antibiotics. This resulted in the identification of several genes whose deletion significantly suppressed resistance evolution, including arcA and gutM. Analysis of double-gene deletion strains suggested that the suppression of resistance evolution caused by arcA and gutM deletion was not caused by epistatic interactions with mutations known to confer drug resistance. These results provide a methodological basis for combinatorial drug treatments that may help to suppress the emergence of resistant pathogens by inhibiting resistance evolution.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。