In-situ Monitoring on Micro-hardness of Laser Molten Zone on AISI4140 Steel by Spectral Analysis

光谱分析实时监测AISI4140钢激光熔化区显微硬度

阅读:4
作者:Siyu Wang, Yichen Wang, Changsheng Liu, Jyoti Mazumder

Abstract

The real-time monitoring technology plays a significant role in the field of laser aided manufacturing. It not only ensures the product quality, but also saves time and expenditure on the subsequent testing. To develop a method to monitor the properties of laser molten zone, in this paper, the AISI4140 steel samples were melted by laser with different parameters. At the same time, the plasma spectra were detected during real-time laser processing. The evolutions for both emission spectra and hardness of molten zone were researched in this work. To correlate the intensity of spectral line with the hardness of molten zone, the method of dimensionless analysis was used in this experiment. As the results shown, in a dimensionless system, there was a linear correlation between dimensionless micro-hardness of molten zone (H*) and dimensionless laser energy density(ln(δ*)); the dimensionless micro-hardness could be expressed by a piecewise function using dimensionless intensity of Fe I spectral lines(I*), dimensionless velocity(v*) and dimensionless laser energy density as variables; depending on the quantitative relation among all dimensionless, a monitoring system of hardness of molten zone was established; by testing under different parameters of laser processing, the mean error of prediction is lower than 3.1%. It means the emission spectroscopy can be a potential way to monitor the properties of parts prepared by laser processing.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。