MgO-enhanced β-TCP promotes osteogenesis in both in vitro and in vivo rat models

MgO 增强的 β-TCP 可促进大鼠体内和体外模型中的成骨作用

阅读:6
作者:Kenichiro Saito, Yusuke Inagaki, Yoshinobu Uchihara, Masakazu Okamoto, Yuki Nishimura, Akihito Kawai, Tatsuro Sugino, Kensuke Okamura, Munehiro Ogawa, Akira Kido, Yasuhito Tanaka

Abstract

Allogeneic bone grafts are used to treat bone defects in orthopedic surgery, but the osteogenic potential of artificial bones remains a challenge. In this study, we developed a β-tricalcium phosphate (β-TCP) formulation containing MgO, ZnO, SrO, and SiO2 and compared its bone-forming ability with that of β-TCP without biological elements. We prepared β-TCP discs with 60% porosity containing 1.0 wt% of these biological elements. β-TCP scaffolds were loaded with bone marrow-derived mesenchymal stem cells (BMSC) from 7-week-old male rats and cultured for 2 weeks. ALP activity and mRNA expression of osteogenic markers were evaluated. In addition, scaffolds were implanted subcutaneously in rats and analyzed after 7 weeks. In vitro, the MgO group showed lower Ca concentrations and higher osteogenic marker expression compared to controls. In vivo, the MgO group showed higher ALP activity compared to controls, and RT-qPCR analysis showed significant expression of BMP2 and VEGF. Histopathology, fluorescent immunostaining, and micro-CT also showed relatively better bone formation in the MgO group. β-TCP with MgO may enhance bone morphology in vitro and in vivo and improve the prognosis of patients with substantial and refractory bone defects.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。