mitoTev-TALE: a monomeric DNA editing enzyme to reduce mutant mitochondrial DNA levels

mitoTev-TALE:一种单体 DNA 编辑酶,可降低突变线粒体 DNA 水平

阅读:5
作者:Claudia V Pereira, Sandra R Bacman, Tania Arguello, Ugne Zekonyte, Sion L Williams, David R Edgell, Carlos T Moraes

Abstract

Pathogenic mitochondrial DNA (mtDNA) mutations often co-exist with wild-type molecules (mtDNA heteroplasmy). Phenotypes manifest when the percentage of mutant mtDNA is high (70-90%). Previously, our laboratory showed that mitochondria-targeted transcription activator-like effector nucleases (mitoTALENs) can eliminate mutant mtDNA from heteroplasmic cells. However, mitoTALENs are dimeric and relatively large, making it difficult to package their coding genes into viral vectors, limiting their clinical application. The smaller monomeric GIY-YIG homing nuclease from T4 phage (I-TevI) provides a potential alternative. We tested whether molecular hybrids (mitoTev-TALEs) could specifically bind and cleave mtDNA of patient-derived cybrids harboring different levels of the m.8344A>G mtDNA point mutation, associated with myoclonic epilepsy with ragged-red fibers (MERRF). We tested two mitoTev-TALE designs, one of which robustly shifted the mtDNA ratio toward the wild type. When this mitoTev-TALE was tested in a clone with high levels of the MERRF mutation (91% mutant), the shift in heteroplasmy resulted in an improvement of oxidative phosphorylation function. mitoTev-TALE provides an effective architecture for mtDNA editing that could facilitate therapeutic delivery of mtDNA editing enzymes to affected tissues.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。