Mitotic entry upon Topo II catalytic inhibition is controlled by Chk1 and Plk1

Topo II 催化抑制后的有丝分裂进入由 Chk1 和 Plk1 控制

阅读:7
作者:Maria Arroyo, Ana Cañuelo, Jesús Calahorra, Florian D Hastert, Antonio Sánchez, Duncan J Clarke, J Alberto Marchal

Abstract

Catalytic inhibition of topoisomerase II during G2 phase delays onset of mitosis due to the activation of the so-called decatenation checkpoint. This checkpoint is less known compared with the extensively studied G2 DNA damage checkpoint and is partially compromised in many tumor cells. We recently identified MCPH1 as a key regulator that confers cells with the capacity to adapt to the decatenation checkpoint. In the present work, we have explored the contributions of checkpoint kinase 1 (Chk1) and polo-like kinase 1 (Plk1), in order to better understand the molecular basis of decatenation checkpoint. Our results demonstrate that Chk1 function is required to sustain the G2 arrest induced by catalytic inhibition of Topo II. Interestingly, Chk1 loss of function restores adaptation in cells lacking MCPH1. Furthermore, we demonstrate that Plk1 function is required to bypass the decatenation checkpoint arrest in cells following Chk1 inhibition. Taken together, our data suggest that MCPH1 is critical to allow checkpoint adaptation by counteracting Chk1-mediated inactivation of Plk1. Importantly, we also provide evidence that MCPH1 function is not required to allow recovery from this checkpoint, which lends support to the notion that checkpoint adaptation and recovery are different mechanisms distinguished in part by specific effectors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。