SUMOylation modulates the stability and function of PI3K-p110β

SUMO化调节PI3K-p110β的稳定性和功能

阅读:1
作者:Ahmed El Motiam # ,Carlos F de la Cruz-Herrera # ,Santiago Vidal ,Rocío Seoane ,Maite Baz-Martínez ,Yanis H Bouzaher ,Emilio Lecona ,Mariano Esteban ,Manuel S Rodríguez ,Anxo Vidal ,Manuel Collado ,Carmen Rivas

Abstract

Class I PI3K are heterodimers composed of a p85 regulatory subunit and a p110 catalytic subunit involved in multiple cellular functions. Recently, the catalytic subunit p110β has emerged as a class I PI3K isoform playing a major role in tumorigenesis. Understanding its regulation is crucial for the control of the PI3K pathway in p110β-driven cancers. Here we sought to evaluate the putative regulation of p110β by SUMO. Our data show that p110β can be modified by SUMO1 and SUMO2 in vitro, in transfected cells and under completely endogenous conditions, supporting the physiological relevance of p110β SUMOylation. We identify lysine residue 952, located at the activation loop of p110β, as essential for SUMOylation. SUMOylation of p110β stabilizes the protein increasing its activation of AKT which promotes cell growth and oncogenic transformation. Finally, we show that the regulatory subunit p85β counteracts the conjugation of SUMO to p110β. In summary, our data reveal that SUMO is a novel p110β interacting partner with a positive effect on the activation of the PI3K pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。