Chronic hyperglycemia reduces the expression of intercellular adhesion molecules and increases intercellular hyperpermeability in the periodontal epithelium

慢性高血糖降低牙周上皮细胞间粘附分子的表达并增加细胞间通透性

阅读:7
作者:Yuki Narukawa, Naoyuki Sugiyama, Jiro Miura, Rentaro Yamashita, Shotaro Tominaga, Yoshihiro Izumi, Takeshi Bamba, Yasushi Ishihama, Yoichiro Kashiwagi, Shinya Murakami

Aims

Hyperglycemia in diabetes is closely associated with periodontal disease progression. This study aimed to investigate the effect of hyperglycemia on the barrier function of gingival epithelial cells as a cause of hyperglycemia-exacerbated periodontitis in diabetes mellitus.

Background/aims

Hyperglycemia in diabetes is closely associated with periodontal disease progression. This study aimed to investigate the effect of hyperglycemia on the barrier function of gingival epithelial cells as a cause of hyperglycemia-exacerbated periodontitis in diabetes mellitus.

Conclusions

High glucose-induced impairment of intercellular adhesion molecule expression in gingival epithelial cells was related to the intercellular permeability of gingival cells, representing a possible link to hyperglycemia-related AGE signaling, oxidative stress, and ERK1/2 activation.

Methods

The abnormal expression of adhesion molecules in gingival epithelium in diabetes was compared between db/db and control mice. To study the effects of hyperglycemia on interepithelial cell permeability, the mRNA and protein expressions of adhesion molecules were investigated using a human gingival epithelial cell line (epi 4 cells) in the presence of either 5.5 mM glucose (NG) or 30 mM glucose (HG). Immunocytochemical and histological analyses were performed. We also studied HG-related intracellular signaling to assess abnormal adhesion molecule expression in the cultured epi 4 cells.

Results

The results of the proteomic analysis implied the abnormal regulation of cell-cell adhesion, and mRNA and protein expression assessments revealed the significant downregulation of Claudin1 expression in the gingival tissues of db/db mice (p < .05 vs control). Similarly, the mRNA and protein expressions of adhesion molecules were lower in epi 4 cells cultured under HG conditions than in those cultured under NG conditions (p < .05). Three-dimensional culture and transmission electron microscopy revealed reduced thickness of the epithelial cell layers with no flattened apical cells and heterogeneously arranged intercellular spaces among adjacent epi 4 cells under the HG. These results were consistent with the increased permeability of epi 4 cells under the HG relative to that of cells under the NG. This abnormal expression of intercellular adhesion molecules under the HG was related to the increased expression of receptors for advanced glycation end products (AGEs) and oxidative stress relative to that seen under the NG, along with stimulation of ERK1/2 phosphorylation in epi 4 cells. Conclusions: High glucose-induced impairment of intercellular adhesion molecule expression in gingival epithelial cells was related to the intercellular permeability of gingival cells, representing a possible link to hyperglycemia-related AGE signaling, oxidative stress, and ERK1/2 activation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。