Sensorimotor Perturbation Induces Late and Transient Molecular Synaptic Proteins Activation and Expression Changes

感觉运动扰动诱导晚期和瞬态分子突触蛋白激活和表达变化

阅读:8
作者:Julie Fourneau, Marie-Hélène Canu, Erwan Dupont

Abstract

Plasticity of the cerebral cortex following a modification of the sensorimotor experience takes place in several steps that can last from few hours to several months. Among the mechanisms involved in the dynamic modulation of the cerebral cortex in adults, it is commonly proposed that short-term plasticity reflects changes in synaptic connections. Here, we were interested in the time-course of synaptic plasticity taking place in the somatosensory primary cortex all along a 14-day period of sensorimotor perturbation (SMP), as well as during a recovery phase up to 24 h. Activation and expression level of pre- (synapsin 1, synaptophysin, synaptotagmin 1) and postsynaptic (AMPA and NMDA receptors) proteins, postsynaptic density scaffold proteins (PSD-95 and Shank2), and cytoskeletal proteins (neurofilaments-L and M, β3-tubulin, synaptopodin, N-cadherin) were determined in cortical tissue enriched in synaptic proteins. During the SMP period, most changes were observed as soon as D7 in the presynaptic compartment and were followed, at D14, by changes in the postsynaptic compartment. These changes persisted at least until 24 h of recovery. Proteins involved in synapse structure (scaffolding, adhesion, cytoskeletal) were mildly affected and almost exclusively at D14. We concluded that experience-dependent reorganization of somatotopic cortical maps is accompanied by changes in synaptic transmission with a very close time-course.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。