Glycomic Analysis Reveals a Conserved Response to Bacterial Sepsis Induced by Different Bacterial Pathogens

糖组学分析揭示了对不同细菌病原体引起的细菌性脓毒症的保守反应

阅读:5
作者:Daniel W Heindel, Shuhui Chen, Peter V Aziz, Jonathan Y Chung, Jamey D Marth, Lara K Mahal

Abstract

Sepsis is an extreme inflammatory response to infection that occurs in the bloodstream and causes damage throughout the body. Glycosylation is known to play a role in immunity and inflammation, but the role of glycans in sepsis is not well-defined. Herein, we profiled the serum glycomes of experimental mouse sepsis models to identify changes induced by 4 different clinical bacterial pathogens (Gram-positive: Streptococcus pneumoniae and Staphylococcus aureus, Gram-negative: Escherichia coli and Salmonella Typhimurium) using our lectin microarray technology. We observed global shifts in the blood sera glycome that were conserved across all four species, regardless of whether they were Gram positive or negative. Bisecting GlcNAc was decreased upon sepsis and a strong increase in core 1/3 O-glycans was observed. Lectin blot analysis revealed a high molecular weight protein induced in sepsis by all four bacteria as the major cause of the core 1/3 O-glycan shift. Analysis of this band by mass spectrometry identified interalpha-trypsin inhibitor heavy chains (ITIHs) and fibronectin, both of which are associated with human sepsis. Shifts in the glycosylation of these proteins were observed. Overall, our work points toward a common mechanism for bacterially induced sepsis, marked by conserved changes in the glycome.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。