Detection of Missing Proteins Using the PRIDE Database as a Source of Mass Spectrometry Evidence

使用 PRIDE 数据库作为质谱证据来源检测缺失蛋白质

阅读:9
作者:Alba Garin-Muga, Leticia Odriozola, Ana Martínez-Val, Noemí Del Toro, Rocío Martínez, Manuela Molina, Laura Cantero, Rocío Rivera, Nicolás Garrido, Francisco Dominguez, Manuel M Sanchez Del Pino, Juan Antonio Vizcaíno, Fernando J Corrales, Victor Segura

Abstract

The current catalogue of the human proteome is not yet complete, as experimental proteomics evidence is still elusive for a group of proteins known as the missing proteins. The Human Proteome Project (HPP) has been successfully using technology and bioinformatic resources to improve the characterization of such challenging proteins. In this manuscript, we propose a pipeline starting with the mining of the PRIDE database to select a group of data sets potentially enriched in missing proteins that are subsequently analyzed for protein identification with a method based on the statistical analysis of proteotypic peptides. Spermatozoa and the HEK293 cell line were found to be a promising source of missing proteins and clearly merit further attention in future studies. After the analysis of the selected samples, we found 342 PSMs, suggesting the presence of 97 missing proteins in human spermatozoa or the HEK293 cell line, while only 36 missing proteins were potentially detected in the retina, frontal cortex, aorta thoracica, or placenta. The functional analysis of the missing proteins detected confirmed their tissue specificity, and the validation of a selected set of peptides using targeted proteomics (SRM/MRM assays) further supports the utility of the proposed pipeline. As illustrative examples, DNAH3 and TEPP in spermatozoa, and UNCX and ATAD3C in HEK293 cells were some of the more robust and remarkable identifications in this study. We provide evidence indicating the relevance to carefully analyze the ever-increasing MS/MS data available from PRIDE and other repositories as sources for missing proteins detection in specific biological matrices as revealed for HEK293 cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。